The Road to Smart Factories

Date:

Assembly Line

Industry 4.0: What Manufacturing Looks Like in the Digital Era

📅 Date:

🏢 Organizations: ASE Global


Already, the market size for Industry 4.0 specific technology was estimated to be $116.1 billion in 2021. By 2028, it’s projected to grow almost three times to $337.1 billion, with core components leading the way.

Different businesses and industries will be able to utilize Industry 4.0 technologies in different capacities, and lights-out manufacturing is no different. Though incorporating fully autonomous factories can unlock huge potential, there are also significant challenges to first overcome. Many industries are capable of benefiting from 5G, IoT, and more robust usage of data and machines in some way. The question of when your sector will see Industry 4.0 is either sooner than you think, or it has already begun.

Read more at Visual Capitalist

Why AI software companies are betting on small data to spot manufacturing defects

📅 Date:

✍️ Author: Kate Kaye

🔖 Topics: Machine Learning, Visual Inspection, Defect Detection

🏢 Organizations: Landing AI, Mariner


The deep-learning algorithms that have come to dominate many of the technologies consumers and businesspeople interact with today are trained and improved by ingesting huge quantities of data. But because product defects show up so rarely, most manufacturers don’t have millions, thousands or even hundreds of examples of a particular type of flaw they need to watch out for. In some cases, they might only have 20 or 30 photos of a windshield chip or small pipe fracture, for example.

Because labeling inconsistencies can trip up deep-learning models, Landing AI aims to alleviate the confusion. The company’s software has features that help isolate inconsistencies and assist teams of inspectors in coming to agreement on taxonomy. “The inconsistencies in labels are pervasive,” said Ng. “A lot of these problems are fundamentally ambiguous.”

Read more at Protocol

Hyundai Motor’s Alabama plant: World’s second most productive

📅 Date:

✍️ Author: Il-Gue Kim

🏭 Vertical: Automotive

🏢 Organizations: Hyundai


At Hyundai’s Alabama plant, it took 24.02 hours to fully assemble a vehicle, more productive than 28.71 hours at General Motors’ Fairfax plant, 29.99 hours at GM’s Lansing Delta assembly plant, and 31.92 hours at Toyota Motor’s Georgetown plant, according to the consulting firm.

Hyundai’s US plant is also more productive than its main Korean manufacturing plant in Ulsan in terms of units produced per hour. Hyundai Motor Manufacturing Alabama LLC (HMMA) produces 68 cars an hour, compared with 45 cars at Hyundai’s Ulsan plant, according to the auto industry.

Read more at The Korea Economic Daily

PHOTOS: There Aren't Enough Chips — Why Are They So Hard to Make?

📅 Date:

✍️ Authors: Caitlin Ochs, Stephanie Aaronson

🏭 Vertical: Semiconductor


From the lab to high above the factory floor, wafers move through a complex process before they are completed. The Wall Street Journal has an interactive slide show documenting the process.

Read more at Wall Street Journal (Paid)

What is the future of Control Systems? The Evolution of Control Systems.

Additive Manufacturing: New Frontiers for Production and Validation

📅 Date:

✍️ Author: Peter de Groot

🔖 Topics: Additive Manufacturing, Metrology

🏢 Organizations: Zygo


Additive manufacturing (AM) is a uniquely disruptive technology; 25-30 years ago, it changed the manufacturing paradigm by altering the way that manufacturers produced prototypes. Today, it is disrupting the way that manufacturers produce end-use parts and components, and is increasingly seen as a truly viable production technique. Now, the conversation among manufacturers is around the most judicious use of AM for production, its advantages, the sweet spot is in terms of production volumes, key opportunities, and barriers to entry. Many of these barriers relate to precision quality control of AM parts, which challenge traditional methods of surface metrology.

Read more at Industrial Distribution

New Micro-3D Printing Technique Could Benefit Pentagon

📅 Date:

✍️ Author: Yasmin Tadjdeh

🔖 Topics: Additive Manufacturing

🏭 Vertical: Defense

🏢 Organizations: Boston Micro Fabrication


For many pieces of equipment, such as lenses or sensors, there is a trend to make them smaller and smaller, he said. But traditional manufacturing techniques that have historically been used to make the parts don’t scale well and have other limitations. To address this, the company developed a process it calls projection micro stereolithography, he said. The technique allows for the rapid photopolymerization of a layer of resin with ultraviolet light at micro-scale resolution, allowing the company to achieve ultra-high accuracy precision and resolution that cannot be achieved with other technologies, according to Kawola’s slides.

Todd Spurgeon, a project engineer at America Makes, said he sees several ways the technology could be leveraged for the Defense Department. For example, it could be employed for higher-end electronics, circuits, small unmanned aerial vehicles and microneedle arrays for fast-acting medicines.

Read more at National Defense Magazine

Surge Demand

TSMC exceeds expectations with $40 to $44 billion in capital expenditures planned this year. Hyundai Heavy and Palantir form a partnership for a big data platform. Machine tool builders such as Tongtai Machine & Tool see a boom ahead within electric vehicle manufacture. Automated picking systems continue to take over the warehouse.