Confirm Smart Manufacturing Research Centre
Assembly Line
Quality prediction of ultrasonically welded joints using a hybrid machine learning model
Ultrasonic metal welding has advantages over other joining technologies due to its low energy consumption, rapid cycle time and the ease of process automation. The ultrasonic welding (USW) process is very sensitive to process parameters, and thus can be difficult to consistently produce strong joints. There is significant interest from the manufacturing community to understand these variable interactions. Machine learning is one such method which can be exploited to better understand the complex interactions of USW input parameters. In this paper, the lap shear strength (LSS) of USW Al 5754 joints is investigated using an off-the-shelf Branson Ultraweld L20. Firstly, a 33 full factorial parametric study using ANOVA is carried out to examine the effects of three USW input parameters (weld energy, vibration amplitude & clamping pressure) on LSS. Following this, a high-fidelity predictive hybrid GA-ANN model is then trained using the input parameters and the addition of process data recorded during welding (peak power).