RFID
Assembly Line
đźšś Inside John Deere Harvester Works: Think your iPhone is cutting-edge? Try driving an X9 combine.
”Supply chain was massively disrupted last year,” said Jim Leach, the factory manager in East Moline. “We had hundreds of machines that were partially complete. We still haven’t seen a return to normal yet.” One way to minimize the wait for parts is to make them yourself. The Harvester Works has eight industrial Trumpf fiber-optic laser stations turning sheet metal into combine parts, chassis components and grain tank sides, then molding them on 10 press brakes — large industrial presses — in a process that is almost totally automated. The only need for human hands is to transfer the components from the lasers to the presses. The plant turns 60,000 tons of sheet steel a year into combine parts.
As big a challenge as making the parts is then keeping track of where they go, spread across Harvest Works’ 71 acres of floor space. Two years ago, employees were manually conducting daily inventory of which parts and aborning combines were where. Now, a large, white refrigerator-sized autonomous mobile robot purrs its way through the facility, scanning the RFID chips in various components to map the inventory down to each bin of bolts.
Assembling and checking are often done simultaneously. Michael Churchill uses an impact wrench gun containing an RFID chip that talks to Deere’s central production computer system, which knows when Churchill has tightened any given bolt enough and tells him to stop.
đźš— Using RFID Databolts in an Engine Assembly Plant
There are many types of RFID processors and network protocols to keep in mind as you’re installing your RFID system in your automotive plant manufacturing line. This blog post focuses on RFID databolts. I’ll discuss best practices for installing them, how to use RFID technology to track engine parts and components throughout the production process and how to use RFID databolts to provide instructions and to document the finished process.
The RFID databolt is a threaded device that can be embedded into a blank engine block or other component prior to production. It includes a radio-frequency identification (RFID) tag, a microprocessor, RFID antenna, and a power source, such as a battery or a connection to a power supply.
Automotive works on its mojo
Top of the list here is reducing transportation costs. In fact, transportation is the largest single cost in the supply chain for automotive, says Matt Bush, vice president of engineering and innovation at KPI Solutions. The challenge, he says, is to increase the density of parts and components inside the trailer. But as Freeberg points out, LIB components can easily weigh out a truck faster than it can be cubed out. The other challenge is to maximize the return ratio of collapsed containers on their trip back to the manufacturing plant, wherever that might be, says Freeberg. The standard ratio today is 3:1, reducing the number of trucks needed to return sustainable containers by two for every three shipments.
As Bush of KPI explains, it’s a continuing battle for automakers to manage the flow and relative state of assembly completion of parts and components lineside, where space is at a premium. For instance, a key question continues to be: Is it better to send kits of parts to the line or stage all inventory there for on-the-spot assembly? “The kitting process takes space but reduces the number of steps people must take along the line,” adds Bush.
Plant tour: Middle River Aerostructure Systems, Baltimore, Md., U.S.
Current production programs at MRAS include the LEAP-1A engine for the Airbus A320neo, LEAP-1C for the Comac C919, the CF-6 engine for multiple civil and military widebody aircraft, the Passport 20 engine for Bombardier’s Global 7500 business jet, the CF34-10A engine for the Comac ARJ21 and the GE9X engine for the Boeing 777X.
“For us, it was the integration with engineering, ERP and MRP that was key,” says Diederich. “Plataine integrates into all of this. It manages the raw materials coming in, generates cut plans per our engineering and marks the labels on the kit plies. We can dynamically nest up to 10 parts. The Plataine software uses AI to recommend which rolls of raw material should be cut next.” What is dynamic nesting? “Optimizing the nests on the fly as the software receives new inputs or when we query it,” says Diederich. “It can also send us alarms to change materials or operations. The sorted ply information is output to the Eastman systems, which have “cut and collect” software that identifies plies for kits using different colored lights. These match stacking tables at the conveyor’s end. ”